Handwritten Character Recognition using Conditional Probabilities
نویسنده
چکیده
Handwritten Character Recognition is an important part of Pattern Recognition. This is also referred to as Intelligent Character Recognition (ICR). In this paper, a conditional probability based combination of multiple recognizers for character recognition will be introduced. After preprocessing the given character image, different feature recognition algorithms are employed, and their performance on a given training set is analyzed. The reliability of the recognition algorithms is measured in terms of Conditional Probabilities. A rule based on their reliability is identified to combine all these individual feature recognition algorithms by incorporating their interdependence. Key-Words: Character Recognition, OCR, ICR, Text-Recognition, Preprocessing, Conditional Probability.
منابع مشابه
Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملCharacter confidence based on N-best list for keyword spotting in online Chinese handwritten documents
In keyword spotting from handwritten documents by text query, the word similarity is usually computed by combining character similarities, which are desired to approximate the logarithm of the character probabilities. In this paper, we propose to directly estimate the posterior probability (also called confidence) of candidate characters based on the N-best paths from the candidate segmentation...
متن کاملLearning state machine-based string edit kernels
During the past few years, several works have been done to derive string kernels from probability distributions. For instance, the Fisher kernel uses a generative model M (e.g. a hidden markov model) and compares two strings according to how they are generated by M . On the other hand, the marginalized kernels allow the computation of the joint similarity between two instances by summing condit...
متن کاملHandwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns
The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...
متن کاملA probabilistic method for keyword retrieval in handwritten document images
Keyword retrieval in handwritten document images (word spotting) is very challenging given that OCR accuracy is not yet adequate for handwritten scripts, specially with large lexicons. Various proposed approaches build indices on information such as image features or OCR scores and have improved the performance of the traditional approach that builds index on OCR’ed text. In this paper, we impr...
متن کامل